TRANSITION METAL COMPOUNDS CONTAINING THE -OTEF 5 AND N-TEF 5-GROUPS.

P. Huppmann, D. Lentz, and K. Seppelt Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69 Heidelberg

The electronegative ligand OTeF $_5$ has been tested on the elements Ti, Mo, W, Ta, Re, Os and others. Compounds such as O=Mo(OTeF $_5$) $_4$, W(OTeF $_5$) $_6$, Ta(OTeF $_5$) $_5$, ReO $_2$ (OTeF $_5$) $_3$, OsO(OTeF $_5$) $_4$ are prepared. While ReVII could be stabilized with OTeF $_5$, the highest oxidation state on Osmium is VI, and Iridium probably IV. O=Mo(OTeF $_5$) $_4$ shows a regular

Chemistry on the ligand N-TeF $_5$ is based on the synthesis of $\mathrm{H_2N}$ -TeF $_5$ and $\mathrm{R_3Si}$ -NH-TeF $_5$. Other new main group derivatives are so far $\mathrm{Cl_2N}$ -TeF $_5$, HClN-TeF $_5$, O=C=N-TeF $_5$, F $_3$ P=N-TeF $_5$, Cl $_3$ N=P-TeF $_5$, F $_2$ S=N-TeF $_5$ and Cl $_2$ Se=N-TeF $_5$, the first compound with a selenium-nitrogen double bond. In the transition metal series the compounds F $_4$ Mo=N-TeF $_5$ and Cl $_4$ W=N-TeF $_5$ (in addition to the longer known polymeric (HgNTeF $_5$) have been prepared. Both have discrete metal nitrogen double bonds.

⁺⁾ K. Seppelt, Inorg. Chem. 12 2837 (1973)